CONCAVITY OF THE SUPERCRITICAL SPECIAL LAGRANGIAN EQUATION

FAN ZHENYU

ABSTRACT. In this note, we show that the special Lagrangian equation $F(D^2u) = \sum_i \arctan \lambda_i(D^2u) = \Theta$ is concave when $\Theta \ge (n-2)\frac{\pi}{2}$. This result was first proved by Yuan [Yua06].

1. Introduction

Let u be a smooth solution to the special Lagrangian equation:

(1.1)
$$F(D^2u) = \sum_{i=1}^n \arctan \lambda_i(D^2u) = \Theta \quad \text{in } \Omega \subset \mathbb{R}^n.$$

For any direction $e \in \mathbb{S}^{n-1}$, we differentiate (1.1) with respect to e, then we get the linearized equation:

(1.2)
$$F^{ij}u_{eij} = 0 \text{ in } \Omega, \text{ where } F^{ij} = \frac{\partial F}{\partial u_{ij}}(D^2u).$$

Denote $\Delta_F = F^{ij}\partial_{ij}$, it is called the linearized operator of F at u. Now (1.2) is equivalent to say that $\Delta_F u_e = 0$. Differentiating (1.2) with respect to e again, we get

(1.3)
$$F^{ij}u_{eeij} + F^{ij,kl}u_{eij}u_{ekl} = 0 \quad \text{in } \Omega, \text{ where } F^{ij,kl} = \frac{\partial^2 F}{\partial u_{ij}\partial u_{kl}}(D^2u).$$

The third order term $F^{ij,kl}u_{eij}u_{ekl}$ is the bad-term. However, if we know the sign of this term, then u_{ee} is the sub-/supersolution to the linearized operator Δ_F . This is crucial in the study of fully nonlinear elliptic equations.

The main result of this note is following:

Theorem 1.1 (Yuan). The third order term $A := F^{ij,kl} u_{eij} u_{ekl} \leq 0$, when $\Theta \geq (n-2)\frac{\pi}{2}$.

Remark 1.2. By symmetry, $A \ge 0$ when $\Theta \le (2-n)\frac{\pi}{2}$. The phase $|\Theta| = (n-2)\frac{\pi}{2}$ is called the critical phase.

Remark 1.3. Theorem 1.1 means that the Evans-Krylov estimate holds for (1.1) when $|\Theta| \geq (n-2)\frac{\pi}{2}$.

Date: April 15, 2025.

2. Derivatives of eigenvalues

Let u be a smooth function on Ω , and let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ be the ordered eigenvalues of D^2u . We shall compute the derivatives of λ_i with respect to the matrix item u_{ij} in this section.

Fix any $p \in \Omega$, by choosing a proper coordinate, we can assume that $D^2u(p)$ is diagonal, i.e. $D^2u(p) = \operatorname{diag}\{\lambda_1(p), \dots, \lambda_n(p)\}$. We also assume that $\lambda_1(p) > \lambda_2(p)$. We only compute $\frac{\partial \lambda_1}{\partial u_{ij}}$ and $\frac{\partial^2 \lambda_1}{\partial u_{ij}\partial u_{kl}}$. The computations of derivatives of other eigenvalues are similar.

By the definition of eigenvalues, we have $0 = \det(D^2 u - \lambda_1 I)$ in Ω . Let \mathfrak{S}_n be the group of *n*-permutations, and let $D^2 u - \lambda_1 I = (m_{ab})_{1 \leq a,b \leq n}$, that is $m_{ab} = u_{ab} - \lambda_1 \delta_{ab}$. Then

(2.1)
$$0 = \det(D^2 u - \lambda_1 I) = \sum_{\sigma \in \mathfrak{S}_n} (-1)^{\operatorname{sgn}(\sigma)} m_{1\sigma(1)} \cdots m_{n\sigma(n)}.$$

• 1st order derivatives: differentiating (2.1) with respect to u_{ij} , we get

(2.2)
$$0 = \sum_{\sigma \in \mathfrak{S}_n} (-1)^{\operatorname{sgn}(\sigma)} \sum_{a=1}^n \frac{\partial m_{a\sigma(a)}}{\partial u_{ij}} m_{1\sigma(1)} \cdots \widehat{m_{a\sigma(a)}} \cdots m_{n\sigma(n)}.$$

Here the sign means that the term is omitted. Note that (m_{ab}) is diagonal and $m_{11} = 0$ at p. In order to ensure that the term $m_{1\sigma(1)} \cdots \widehat{m_{a\sigma(a)}} \cdots m_{n\sigma(n)}$ in the sum does not vanish, we must have $\sigma = Id$ and m_{11} is omitted. Therefore, at p, (2.2) becomes

$$0 = \frac{\partial m_{11}}{\partial u_{ij}} m_{22} \cdots m_{nn} = \frac{\partial (u_{11} - \lambda_1)}{\partial u_{ij}} (\lambda_2 - \lambda_1) \cdots (\lambda_n - \lambda_1).$$

Hence, we have at p,

(2.3)
$$\frac{\partial (u_{11} - \lambda_1)}{\partial u_{ij}} = 0, \quad \Longrightarrow \quad \frac{\partial \lambda_1}{\partial u_{ij}} = \frac{\partial u_{11}}{\partial u_{ij}} = \delta_{ij}^{11}.$$

• 2nd order derivatives: differentiating (2.2) with respect to u_{kl} again, we get

$$0 = \sum_{\sigma \in \mathfrak{S}_{n}} (-1)^{\operatorname{sgn}(\sigma)} \sum_{a=1}^{n} \frac{\partial^{2} m_{a\sigma(a)}}{\partial u_{ij} \partial u_{kl}} m_{1\sigma(1)} \cdots \widehat{m_{a\sigma(a)}} \cdots m_{n\sigma(n)}$$

$$+ \sum_{\sigma \in \mathfrak{S}_{n}} (-1)^{\operatorname{sgn}(\sigma)} \sum_{a=1}^{n} \sum_{b \neq a} \frac{\partial m_{a\sigma(a)}}{\partial u_{ij}} \frac{\partial m_{b\sigma(b)}}{\partial u_{kl}} m_{1\sigma(1)} \cdots \widehat{m_{a\sigma(a)}} \cdots \widehat{m_{b\sigma(b)}} \cdots m_{n\sigma(n)}.$$

$$= I + II.$$

For I, similar as before, we have at p,

(2.4)
$$I = \frac{\partial^2 m_{11}}{\partial u_{ij} \partial u_{kl}} m_{22} \cdots m_{nn} = \frac{\partial^2 (u_{11} - \lambda_1)}{\partial u_{ij} \partial u_{kl}} (\lambda_2 - \lambda_1) \cdots (\lambda_n - \lambda_1)$$
$$= -\frac{\partial^2 \lambda_1}{\partial u_{ij} \partial u_{kl}} (\lambda_2 - \lambda_1) \cdots (\lambda_n - \lambda_1).$$

For II, in order to ensure that the term $m_{1\sigma(1)}\cdots\widehat{m_{a\sigma(a)}}\cdots\widehat{m_{b\sigma(b)}}\cdots m_{n\sigma(n)}$ in the sum does not vanish, we must have $\sigma(k)=k$ for $k\neq a,b$ and m_{11} is omitted. Then σ has only two choices: the identity Id and the swap (ab). Besides, one of a,b must equal to 1. Therefore, at p,

$$II = 2\sum_{a>1} \frac{\partial m_{11}}{\partial u_{ij}} \frac{\partial m_{aa}}{\partial u_{kl}} m_{22} \cdots \widehat{m_{aa}} \cdots m_{nn} - \sum_{a>1} \frac{\partial m_{1a}}{\partial u_{ij}} \frac{\partial m_{a1}}{\partial u_{kl}} m_{22} \cdots \widehat{m_{aa}} \cdots m_{nn} - \sum_{a>1} \frac{\partial m_{1a}}{\partial u_{ij}} \frac{\partial m_{1a}}{\partial u_{kl}} m_{22} \cdots \widehat{m_{aa}} \cdots m_{nn}$$

By (2.3), the first term vanishes at p, then

(2.5)

$$II = -\sum_{a>1} \delta_{1i}\delta_{aj}\delta_{ak}\delta_{1l} \frac{(\lambda_2 - \lambda_1)\cdots(\lambda_n - \lambda_1)}{\lambda_a - \lambda_1} - \sum_{a>1} \delta_{ai}\delta_{1j}\delta_{1k}\delta_{al} \frac{(\lambda_2 - \lambda_1)\cdots(\lambda_n - \lambda_1)}{\lambda_a - \lambda_1}.$$

Combining (2.4) and (2.5), we have

$$0 = I + II = -\frac{\partial^2 \lambda_1}{\partial u_{ij} \partial u_{kl}} (\lambda_2 - \lambda_1) \cdots (\lambda_n - \lambda_1) - \sum_{a>1} \delta_{1i} \delta_{aj} \delta_{ak} \delta_{1l} \frac{(\lambda_2 - \lambda_1) \cdots (\lambda_n - \lambda_1)}{\lambda_a - \lambda_1} - \sum_{a>1} \delta_{ai} \delta_{1j} \delta_{1k} \delta_{al} \frac{(\lambda_2 - \lambda_1) \cdots (\lambda_n - \lambda_1)}{\lambda_a - \lambda_1}.$$

Hence,

(2.6)
$$\frac{\partial^{2} \lambda_{1}}{\partial u_{ij} \partial u_{kl}} = \sum_{a>1} \left(\delta_{1i} \delta_{aj} \delta_{ak} \delta_{1l} + \delta_{ai} \delta_{1j} \delta_{1k} \delta_{al} \right) \frac{1}{\lambda_{1} - \lambda_{a}}$$

$$= \begin{cases} \frac{1}{\lambda_{1} - \lambda_{a}}, & \text{if } i = l = 1, j = k = a \text{ or } i = l = a, j = k = 1; \\ 0, & \text{else.} \end{cases}$$

We summarize the above computations by the following proposition.

Proposition 2.1. Let u be a smooth function on Ω , and let $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$ be the ordered eigenvalues of D^2u . Assume that D^2u is diagonal at p, then

$$\frac{\partial \lambda_a}{\partial u_{ij}} = \delta_{ij}^{aa} = \begin{cases} 1 & i = j = a; \\ 0 & else. \end{cases}$$

and

$$\begin{split} \frac{\partial^2 \lambda_a}{\partial u_{ij} \partial u_{kl}} &= \sum_{b \neq a} \left(\delta_{ai} \delta_{bj} \delta_{bk} \delta_{al} + \delta_{bi} \delta_{aj} \delta_{ak} \delta_{bl} \right) \frac{1}{\lambda_a - \lambda_b} \\ &= \begin{cases} \frac{1}{\lambda_a - \lambda_b}, & \text{if } i = l = a, j = k = b \text{ or } i = l = b, j = k = a; \\ 0, & \text{else.} \end{cases} \end{split}$$

3. Proof of Theorem 1.1

We prove Theorem 1.1 pointwisely. Fixed any $p \in \Omega$, we may assume that $D^2u(p)$ is diagonal. We first compute F^{ij} , $F^{ij,kl}$ at p. By Proposition 2.1, at p, we have

$$F^{ij} = \sum_{a=1}^{n} \frac{\partial F}{\partial \lambda_{a}} \frac{\partial \lambda_{a}}{\partial u_{ij}} = \sum_{a=1}^{n} \frac{1}{1 + \lambda_{a}^{2}} \delta_{ij}^{aa} = \begin{cases} \frac{1}{1 + \lambda_{i}^{2}}, & i = \\ 0, & else \end{cases}$$

$$F^{ij,kl} = \sum_{a,b=1}^{n} \frac{\partial^{2} F}{\partial \lambda_{a} \partial \lambda_{b}} \frac{\partial \lambda_{a}}{\partial u_{ij}} \frac{\partial \lambda_{b}}{\partial u_{kl}} + \sum_{a=1}^{n} \frac{\partial F}{\partial \lambda_{a}} \frac{\partial^{2} \lambda_{a}}{\partial u_{ij} \partial u_{kl}}$$

$$\int \frac{-2\lambda_{i}}{(1 + \lambda^{2})^{2}}, \qquad i = j = k = l;$$

$$= \begin{cases} \frac{-2\lambda_{i}}{(1+\lambda_{i}^{2})^{2}}, & i=j=k=l; \\ \frac{-(\lambda_{i}+\lambda_{j})}{(1+\lambda_{i}^{2})(1+\lambda_{j}^{2})} & i=k; j=l; and \ i\neq j \\ 0 & else \end{cases}$$

Now the third order term $A = F^{ij,kl}u_{eij}u_{ekl}$ in Theorem 1.1 has the following form at p:

$$A = F^{ij,kl} u_{eij} u_{ekl} = \sum_{i=1}^{n} F^{ii,ii} u_{eii}^{2} + \sum_{i \neq j} F^{ij,ij} u_{eij}^{2}$$

$$= -2 \sum_{i=1}^{n} \frac{\lambda_{i}}{(1 + \lambda_{i}^{2})^{2}} u_{eii}^{2} - \sum_{i \neq j} \frac{\lambda_{i} + \lambda_{j}}{(1 + \lambda_{i}^{2})(1 + \lambda_{j}^{2})} u_{eij}^{2}$$

$$:= -2A_{1} - A_{2}.$$

Proof of Theorem 1.1. It suffices to show that $A_1, A_2 \geq 0$ when $\Theta \geq (n-2)\frac{\pi}{2}$, where $A_1 = \sum_i \frac{\lambda_i}{(1+\lambda_i^2)^2} u_{eii}^2$ and $A_2 = \sum_{i \neq j} \frac{\lambda_i + \lambda_j}{(1+\lambda_i^2)(1+\lambda_j^2)} u_{eij}^2$.

If $\lambda_1 \geq \cdots \geq \lambda_n \geq 0$, the conclusion is obvious, then we assume $\lambda_n < 0$ in the

following.

Claim 1. We have $\lambda_1 \geq \cdots \geq \lambda_{n-1} > 0 > \lambda_n$.

Let $\theta_i = \arctan \lambda_i$, by the equation (1.1), we have $\theta_1 + \cdots + \theta_n = \Theta \ge (n-2)\frac{\pi}{2}$. Note that $\theta_n = \arctan \lambda_n < 0$, if $\theta_{n-1} \le 0$, then

$$\theta_1 + \dots + \theta_n < \theta_1 + \dots + \theta_{n-2} < (n-2)\frac{\pi}{2},$$

#

#

which leads a contradiction.

Claim 2. For any $1 \le i, j \le n$ with $i \ne j$, we have $\lambda_i + \lambda_i > 0$.

To see this, it suffices to show that $\lambda_{n-1} + \lambda_n \geq 0$. Since $\theta_{n-1} + \theta_n = \Theta - (\theta_1 + \cdots + \theta_{n-2}) > \Theta - (n-2)\frac{\pi}{2} \geq 0$, and $\theta_{n-1} + \theta_n < \theta_{n-1} < \frac{\pi}{2}$, then

$$0 < \tan(\theta_{n-1} + \theta_n) = \frac{\lambda_{n-1} + \lambda_n}{1 - \lambda_{n-1}\lambda_n}.$$

Since $\lambda_{n-1}\lambda_n < 0$, then we get $\lambda_{n-1} + \lambda_n > 0$.

From Claim 2, we can easily see that $A_2 \geq 0$. Next, we focus on A_1 . Denote $t_i = u_{eii}$, then

$$A_1 = \sum_{i=1}^{n} \frac{\lambda_i}{(1+\lambda_i^2)^2} t_i^2 = \sum_{i=1}^{n} t_i^2 \tan \theta_i \cos^4 \theta_i.$$

By the linearized equation (1.2), we have

$$0 = F^{ij}u_{eij} = \sum_{i=1}^{n} \frac{1}{1 + \lambda_i^2} u_{eii} = \sum_{i=1}^{n} t_i \cos^2 \theta_i.$$

Then, by the Cauchy inequality, we have

$$t_n^2 \cos^4 \theta_n = \left(\sum_{i=1}^{n-1} t_i \cos^2 \theta_i\right)^2 \le \left(\sum_{i=1}^{n-1} t_i^2 \cos^4 \theta_i \tan \theta_i\right) \left(\sum_{i=1}^{n-1} \frac{1}{\tan \theta_i}\right).$$

Note that $\tan \theta_n < 0$, then

$$A_1 \ge \left(\sum_{i=1}^{n-1} t_i^2 \cos^4 \theta_i \tan \theta_i\right) \left(1 + \sum_{i=1}^{n-1} \frac{\tan \theta_n}{\tan \theta_i}\right) = \left(\sum_{i=1}^{n-1} t_i^2 \cos^4 \theta_i \tan \theta_i\right) \left(\sum_{i=1}^{n} \frac{\tan \theta_n}{\tan \theta_i}\right).$$

In order to prove $A_1 \ge 0$, we only need to show that $\sum_i \frac{1}{\tan \theta_i} \le 0$. Let $\alpha_i = \frac{\pi}{2} - \theta_i$, then $\sum_i \frac{1}{\tan \theta_i} = \sum_i \tan \alpha_i$.

 $\# Claim \ 3. \ \sum_{i} \tan \alpha_i \leq 0.$

Since we have assumed $\theta_n < 0$, then $(n-2)\frac{\pi}{2} \le \Theta < \theta_1 + \dots + \theta_{n-1} < (n-1)\frac{\pi}{2}$. Hence $\alpha_1 + \dots + \alpha_n = n\frac{\pi}{2} - \Theta \in (\frac{\pi}{2}, \pi]$, thus we have

(3.1)
$$0 > \tan(\alpha_1 + \dots + \alpha_n) = \frac{\tan(\alpha_1 + \dots + \alpha_{n-1}) + \tan \alpha_n}{1 - \tan(\alpha_1 + \dots + \alpha_{n-1}) \tan \alpha_n}.$$

For $i = 1, \dots, n-1$, we have $\theta_i \in (0, \frac{\pi}{2})$, then $\alpha_i \in (0, \frac{\pi}{2})$. Since $\theta_n \in (-\frac{\pi}{2}, 0)$, then $\alpha_n \in (\frac{\pi}{2}, \pi)$. Therefore,

$$0 < \alpha_1 + \dots + \alpha_{n-1} = (\alpha_1 + \dots + \alpha_n) - \alpha_n < \frac{\pi}{2},$$

which means $\tan(\alpha_1 + \cdots + \alpha_{n-1}) > 0$. Since $\tan \alpha_n < 0$, by (3.1), we have

$$\tan \alpha_n + \tan(\alpha_1 + \dots + \alpha_{n-1}) < 0.$$

Note that

$$0 < \tan(\alpha_1 + \dots + \alpha_{n-1}) = \frac{\tan(\alpha_1 + \dots + \alpha_{n-2}) + \tan \alpha_{n-1}}{1 - \tan(\alpha_1 + \dots + \alpha_{n-2}) \tan \alpha_{n-1}}.$$

Since α_{n-1} , $\alpha_1 + \cdots + \alpha_{n-2} \in (0, \frac{\pi}{2})$, then we have $\tan(\alpha_1 + \cdots + \alpha_{n-2})$, $\tan \alpha_{n-1} > 0$. Hence $0 < 1 - \tan(\alpha_1 + \cdots + \alpha_{n-2}) \tan \alpha_{n-1} < 1$, which means

$$\tan(\alpha_1 + \dots + \alpha_{n-1}) > \tan(\alpha_1 + \dots + \alpha_{n-2}) + \tan\alpha_{n-1}.$$

Repeating the above argument, we finally have

6

(3.3)
$$\tan(\alpha_1 + \dots + \alpha_{n-1}) > \tan(\alpha_1 + \dots + \alpha_{n-2}) + \tan\alpha_{n-1}$$
$$> \tan(\alpha_1 + \dots + \alpha_{n-3}) + \tan\alpha_{n-2} + \tan\alpha_{n-1}$$
$$> \dots$$
$$> \tan\alpha_1 + \dots + \tan\alpha_{n-1}.$$

Combining (3.2) and (3.3), the proof is complete.

$$\ln\left(\frac{1+x}{1-x}\right) + \ln\left(\frac{1+y}{1-y}\right) + \ln\left(\frac{1+z}{1-z}\right) = 100$$

References

[Yua06] Yu Yuan, Global solutions to special Lagrangian equations, Proc. Amer. Math. Soc. 134 (2006), no. 5, 1355–1358. MR 2199179